A new ultrafast laser emits pulses of light 30 billion times a second

frequency comb made of discrete colors of light

Ultrafast lasers emit short, rapid-fire bursts of light, with each pulse typically lasting tens of millionths of a billionth of a second. A new laser pulses 30 billion times a second — about 100 times as fast as most ultrafast lasers, researchers report in the Sept. 28 Science.

The speed boost was thanks to a new technique for making ultrafast lasers. Typically, researchers use a technique called mode locking, in which light bounces back and forth in a mirrored cavity in such a way that the light waves build on each other to create short flashes. The new method takes a more “brute force” approach, says study coauthor David Carlson, a physicist at the National Institute of Standards and Technology in Boulder, Colo., by essentially carving up a continuous laser beam into individual pulses.

Extreme Climate Survey

Science News is collecting reader questions about how to navigate our planet's changing climate.

What do you want to know about extreme heat and how it can lead to extreme weather events?

Ultrafast lasers can produce what’s known as a frequency comb, light made up of discrete colors. Those evenly spaced hues look like the teeth of a comb when plotted. To make the new approach work, the scientists had to eliminate electronic jitter that would otherwise smear out the comb’s sharp teeth.

These combs can be used as a kind of “ruler” for light, and are so useful for precisely measuring the frequency of light that part of the 2005 Nobel Prize in physics was awarded to two researchers who had developed the technique (SN: 10/8/05, p. 229). Part of the 2018 Nobel Prize in physics was also awarded to ultrafast laser research, for a method to produce very intense, short laser pulses. But that technology was not used in this work (SN Online: 10/2/2018).

The faster pulses achieved with the new technique result in a frequency comb with more widely spaced teeth. That property could be useful for calibrating telescope instruments called spectrographs, which slice up light from stars into various colors, aiding scientists in observations such as the hunt for planets beyond the solar system. Those spectrographs can’t distinguish frequencies that are too close together, so the instruments require a wide comb.

Faster pulses could also speed up certain kinds of imaging of biological tissues. And the laser could be useful for telecommunications, says physicist and electrical engineer Andrew Weiner of Purdue University in West Lafayette, Ind., who called the work a “tour de force.” Each color of light could carry its own stream of information in a fiber-optic cable.

The researchers “have achieved this amazing level of performance,” says physicist Victor Torres-Company of Chalmers University of Technology in Gothenburg, Sweden. “It’s up to us to think and dream what we could do with this light source.”

Questions or comments on this article? E-mail us at feedback@sciencenews.org | Reprints FAQ

A version of this article appears in the October 27, 2018 issue of Science News.

Citations

D.R. Carlson et al. Ultrafast electro-optic light with subcycle control. Science. Vol. 361, September 28, 2018, p. 1358. doi:10.1126/science.aat6451.

Emily Conover

About Emily Conover

Physics writer Emily Conover has a Ph.D. in physics from the University of Chicago. She is a two-time winner of the D.C. Science Writers’ Association Newsbrief award.

We are at a critical time and supporting climate journalism is more important than ever. Science News and our parent organization, the Society for Science, need your help to strengthen environmental literacy and ensure that our response to climate change is informed by science.

Related Stories

  1. A photo of a green laser beam being sent through several pieces of glass.

Technique to see the ultrafast world of electrons wins 2023 physics Nobel

By Emily Conover October 3, 2023

lidar image of Cotoca site

Lasers reveal ancient urban sprawl hidden in the Amazon

By Bruce Bower May 25, 2022

tweezers hold a diamond sensor as light shines through

This environmentally friendly quantum sensor runs on sunlight

By James R. Riordon September 19, 2022

More Stories from Science News on Physics

  1. An illustration shows two circles representing subatomic particles, linked by bright lines, on a background showing a particle detector.

The Large Hadron Collider exposes quarks’ quantum entanglement

By Emily Conover 12 hours ago

An illustration shows a black hole, <a href=indicated by warped light, near a planet in the solar system" width="330" height="186" />

How to spot tiny black holes that might pass through the solar system

By Emily Conover September 17, 2024

A rainbow-hued quantum computing processor

A quantum computer corrected its own errors, improving its calculations

By Emily Conover September 10, 2024

A stack of <a href=PVC pipe lies in front of workers." width="330" height="186" />

50 years ago, some of plastic’s toxic hazards were exposed

By Erin Garcia de Jesús September 6, 2024

A photograph of scientific equipment, including a laser beam illuminating gas inside a vacuum chamber.

A nuclear clock prototype hints at ultraprecise timekeeping

By Emily Conover September 4, 2024

A spoon scooping mayonnaise out of a jar.

Mayo is weirdly great for understanding nuclear fusion experiments

By Emily Conover August 30, 2024

An array of circular photomultiplier tubes that is part of the LZ experiment.

The possibilities for dark matter have just shrunk — by a lot

By Emily Conover August 26, 2024

This illustration of a sheet of graphene shows a grid of connected atoms with a red streak going diagonally across it.

The world’s fastest microscope makes its debut

By Skyler Ware August 21, 2024

Science News

Science News was founded in 1921 as an independent, nonprofit source of accurate information on the latest news of science, medicine and technology. Today, our mission remains the same: to empower people to evaluate the news and the world around them. It is published by the Society for Science, a nonprofit 501(c)(3) membership organization dedicated to public engagement in scientific research and education (EIN 53-0196483).

© Society for Science & the Public 2000–2024. All rights reserved.

Privacy Manager

Log in

Subscribers, enter your e-mail address for full access to the Science News archives and digital editions.